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a b s t r a c t

Evolutionists have debated whether population-genetic parameters, such as effective population size
and migration rate, differ between males and females. In humans, most analyses of this problem have
focused on the Y chromosome and the mitochondrial genome, while the X chromosome has largely
been omitted from the discussion. Past studies have compared FST values for the Y chromosome and
mitochondrion under a model with migration rates that differ between the sexes but with equal male
and female population sizes. In this study we investigate rates of coalescence for X-linked and autosomal
lineages in an island model with different population sizes and migration rates for males and females,
obtaining themean time to coalescence for pairs of lineages from the same deme and for pairs of lineages
from different demes. We apply our results to microsatellite data from the Human Genome Diversity
Panel, and we examine the male and female migration rates implied by observed FST values.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

As sex-biased dispersal processes are common in a variety of
species (Lawson Handley and Perrin, 2007), evolutionists have
long been interested in how variables relating to demography and
population structure differ between males and females.
Differences between human males and females in parameters

such as migration rate and effective population size have gener-
ally been investigated using the uniparentally-inherited Y chro-
mosome and mitochondrial genome. Past studies have observed
differences in autosomal, Y-chromosomal and mitochondrial vari-
ation, and have typically explained these differences based on ma-
trilocality or patrilocality (Wilkins and Marlowe, 2006; Wilkins,
2006).
In a patrilocal society, we expect to see more genetic differen-

tiation across Y-chromosomal lineages than across mitochondrial
lineages; such a pattern was observed using globally-distributed
samples by Seielstad et al. (1998), while patterns consistent with
matrilocality have been observed in Thailand (Oota et al., 2001) and
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Divinity Avenue, Cambridge, MA 02138, USA.
E-mail address: sramach@fas.harvard.edu (S. Ramachandran).

Melanesia (Kayser et al., 2008). Recent studies have questioned the
spatial scale at which one can expect to infer a genetic signature of
patrilocality or matrilocality, arguing that this signal may be ob-
servable within geographic regions, but likely not at a global level
(Wilder et al., 2004a; Wilkins and Marlowe, 2006).
The X chromosome has contributed comparatively little to the

inference of sex-specific human migration rates. Garrigan et al.
(2007) compared genetic variation using resequence data at two
X-linked loci totaling 8486 bp, 6650 bp encompassing 13 Alu
elements on the Y chromosome, and 780 bp of the cytochrome
oxidase subunit III on the mitochondrion. Their inference of
migration rates among 10 human populations did not produce
a consistent pattern of sex-biased gene flow across all the loci
investigated, though different rates of male and female migration
were inferred for many pairs of populations.
Although variation in the Y chromosome and the mitochon-

drion has generally been used in studies of sex-specific differences
in human dispersal, comparisons between variation observed on
the X chromosome and on autosomes also have the potential to
shed light on evolutionarily interesting differences betweenmales
and females (Schaffner, 2004). In contrast with the Y chromosome
and the mitochondrial genome, each of which is effectively a sin-
gle absolutely-linked locus, the X chromosome and autosomes of-
fer numerous independent markers. The availability of multiple
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markers potentially adds power to the analysis, although recom-
bination and the movement of the autosomes and X chromosome
between males and females are expected to complicate the eluci-
dation of sex-specific histories (Ramachandran et al., 2004;Wilkins
and Marlowe, 2006).
Using 17X-linked and377 autosomalmicrosatellites genotyped

in 52 globally-distributed populations in the Human Genome
Diversity Panel (HGDP), Ramachandran et al. (2004) investigated
differences in patterns of X-chromosomal and autosomal geo-
graphical variation around the world, as measured by FST among
populations. These differenceswere studied by considering the dif-
ferent numbers of copies of X-linked and autosomal loci in a pop-
ulation, for a given female fraction of the total population size, and
by deriving a formula for FST using a model of divergence from an
ancestral populationwith subsequent isolation of descendant pop-
ulations. Male and female effective population sizes were allowed
to vary, but themodel did not involvemigration among subpopula-
tions. Ramachandran et al. (2004) found that a ratio of the number
of females to the total population size of 0.5 was sufficient to ex-
plain global differences in genetic variation between X-linked and
autosomal microsatellites. However, the study could not explain
differences in FST in some of the continental regions of the dataset
where the divergence model might be less representative of pop-
ulation history (for example, Europe, where gene flow among
populations post-divergence is likely to have been high).
Here we investigate the rates of coalescence for X-linked and

autosomal loci in an island migration model with sex-specific
population sizes and migration rates. Past theoretical studies have
examined the effect of sex-specific gene flow and genetic drift
on genetic differentiation and F-statistics (Wang, 1997; Rousset,
1999; Wang, 1999; Laporte and Charlesworth, 2002; Vitalis,
2002; Hedrick, 2007). We consider these issues from a coalescent
perspective. We start with an exact discrete island model with
migrating adults, and use a result due toMöhle (1998) to explicitly
take the limit of the coalescent process as population size goes
to infinity. We obtain simple expressions for FST at X-linked and
autosomal loci in our model under the usual assumptions of the
structured coalescent.
Applying the analytical results to the X-linked and autosomal

microsatellite data from the HGDP (Cann et al., 2002; Ramachan-
dran et al., 2004, 2005; Rosenberg et al., 2005), we find that global
patterns of population differentiation as measured by FST can be
explained without requiring different migration rates for males
and females.Within geographic regions, however, the inferred sex-
specific migration rates differ substantially, although the direction
of the deviation is not always the same.

2. The migration model

Consider an island model with D demes and four sex-specific
parameters, each of which has the same value for all demes: fixed
numbers of males and females (Nm and Nf , respectively), and fixed
numbers of male and female migrants per generation (Mm andMf ,
respectively). The total population size is DN = D(Nm + Nf ) (each
demehas the samenumber of individuals). Herewe canwriteNf =
Nr , where r is the female fraction of the population size, assumed
to be the same for each deme. It follows that Nm = N(1 − r).
Denote bymf the backwardsmigration rate for females; that is, the
probability that a female sampled from deme i has just migrated
from some other deme in the generation during which sampling
took place. The corresponding rate for males is mm. Since Mm and
Mf are fixed, mf = Mf /Nf and mm = Mm/Nm. We shall assume
throughout that mf and mm are of the order 1/N . Migration takes
place after reproduction within demes, and the probability that a
male (for example) migrates to a specific deme ismm/(D− 1).

Table 1
States in the migration model

Column number in Boxes I and II
Autosomal X-linked Definition

1 1 In one female individual, not coalesced
2 In one male individual, not coalesced
3 2 In two female individuals, same deme
4 3 In two male individuals, same deme
5 4 In one male and one female, same deme
6 5 In two female individuals, different demes
7 6 In two male individuals, different demes
8 7 In one male and one female, different demes
9 8 In one female, coalesced
10 9 In one male, coalesced

Possible states in which two sampled lineages can be found in the island model
with two sexes, and the columns of the autosomal and X-linked single-generation
transition matrices that correspond to each state. Note that two sampled X-linked
lineages cannot be found in the same male unless they have already coalesced.

We consider a single genetic locus. The resulting single-
generation transition matrix for a sample of two autosomal
lineages in this model has 10 states. For a sample of two X-linked
lineages the model has 9 states, as listed in Table 1.
Let PA be the 10 × 10 single-generation transition matrix for

two lineages sampled from an autosomal locus, and let (PA)ij refer
to the entry in the ith rowand jth columnof thematrix. Eachmatrix
entry is the product of two terms: (a) a term involving migration
among demes or lack of migration, and (b) a term describing
inheritance.
For example, (PA)56, according to Table 1, is the entry describing

the probability that two lineages sampled from one male and one
female in the same deme came from female parents in different
demes in the previous generation. (PA)56 is the product of (a) the
probability that one male and one female lineage currently in the
same deme were in different demes in the previous generation
(either because one lineage was in a migrant or because both
lineages were in migrants that arrived in the same deme), and
(b) the probability that two autosomal lineages (one from a male
and one from a female) both came from female parents. The latter
probability is 1/4, since for each sampled individual we choose the
maternal autosome with probability 1/2.

PX denotes the 9 × 9 single-generation transition matrix
for two lineages sampled from an X-linked locus. (PX )45 is the
probability that two X-linked lineages sampled from onemale and
one female in the samedeme came from female parents in different
demes in the previous generation (Table 1). The probability (a)
above, that the lineages were in different demes in the previous
generation, will not differ between an X-linked and autosomal
locus. However, the analog to (b) above, the probability that two
X-linked lineages (one from a male and one from a female) came
from two female parents is 1/2. This is because the male allele
would have had to come from the female parent in the previous
generation, while we choose the female’s allele from her maternal
X with probability 1/2.
The matrices PA and PX are rather cumbersome due to their

size. Since the terms describing migration among demes do not
depend on whether the sampled locus is X-linked or autosomal,
the matrices’ entries can be written more simply by using the
notation gk,li,j for terms of type (a) above in the following manner.
Let us denote the state in which two lineages, regardless of sex,
are in the same deme as state I; state II represents two lineages
from different demes. Then gM,F

I,II is the probability that a sample
of one male and one female now in state I was in state II in
the previous generation, which corresponds to (a) in the previous
paragraph. The probabilities gk,li,j for all types of samples are given
in Appendix A.
Using this notation, for example, (PA)39 is equal to the product

of (a) gF ,F
I,I (the probability two females currently in the same
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Same individual︷ ︸︸ ︷
F M

Same deme︷ ︸︸ ︷
F , F M, M M, F

Different demes︷ ︸︸ ︷
F , F M, M M, F

Coalesced︷ ︸︸ ︷
F M

PA =



0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
gF ,F
I,I
8Nf

gF ,F
I,I
8Nm

gF ,F
I,I
4

(
1− 1

Nf

)
gF ,F
I,I
4

(
1− 1

Nm

)
gF ,F
I,I
2

gF ,F
I,II
4

gF ,F
I,II
4

gF ,F
I,II
2

gF ,F
I,I
8Nf

gF ,F
I,I
8Nm

gM,M
I,I
8Nf

gM,M
I,I
8Nm

gM,M
I,I
4

(
1− 1

Nf

)
gM,M
I,I
4

(
1− 1

Nm

)
gM,M
I,I
2

gM,M
I,II
4

gM,M
I,II
4

gM,M
I,II
2

gM,M
I,I
8Nf

gM,M
I,I
8Nm

gM,F
I,I
8Nf

gM,F
I,I
8Nm

gM,F
I,I
4

(
1− 1

Nf

)
gM,F
I,I
4

(
1− 1

Nm

)
gM,F
I,I
2

gM,F
I,II
4

gM,F
I,II
4

gM,F
I,II
2

gM,F
I,I
8Nf

gM,F
I,I
8Nm

gF ,F
II,I
8Nf

gF ,F
II,I
8Nm

gF ,F
II,I
4

(
1− 1

Nf

)
gF ,F
II,I
4

(
1− 1

Nm

)
gF ,F
II,I
2

gF ,F
II,II
4

gF ,F
II,II
4

gF ,F
II,II
2

gF ,F
II,I
8Nf

gF ,F
II,I
8Nm

gM,M
II,I
8Nf

gM,M
II,I
8Nm

gM,M
II,I
4

(
1− 1

Nf

)
gM,M
II,I
4

(
1− 1

Nm

)
gM,M
II,I
2

gM,M
II,II
4

gM,M
II,II
4

gM,M
II,II
2

gM,M
II,I
8Nf

gM,M
II,I
8Nm

gM,F
II,I
8Nf

gM,F
II,I
8Nm

gM,F
II,I
4

(
1− 1

Nf

)
gM,F
II,I
4

(
1− 1

Nm

)
gM,F
II,I
2

gM,F
II,II
4

gM,F
II,II
4

gM,F
II,II
2

gM,F
II,I
8Nf

gM,F
II,I
8Nm

0 0 0 0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 0 0 1
2

1
2


Box I.

deme were in the same deme in the previous generation) and
(b) 1/(8Nf ) (the probability two sampled lineages, one from each
sampled female, coalesce in a female in the previous generation).
1/(8Nf ) is the probability that in both females the maternal
autosome is selected (=1/2 × 1/2) times the probability the loci
were inherited from the same maternal chromosome (=1/(2Nf )).
(PX )62 is equal to (a) gM,F

II,I (the probability two sampled males
are currently in different demes but were in the same deme in
the previous generation) times (b) 1 − 1/Nf (the probability the
sampled lineages come from two different females). Since a male’s
X chromosome must come from his mother, the probability that
two male X chromosomes are found in two different females is
simply the probability the chromosomes do not come from the
same female.
Suppose the sampled lineages are currently in the same

individual but that the lineages have not coalesced (columns 1
and 2 in PA and column 1 in PX ). Since migration occurs after
reproduction within demes, the lineages had to be in a male and
female (the individual’s parents) in the same deme in the previous
generation, regardless ofwhether or not the individual fromwhom
the lineages were sampled had migrated (see rows 1 and 2 of the
matrix in Box I and row 1 of the matrix in Box II).
Thus we can write down both the autosomal and X-linked

single-generation transition matrices, PA and PX , as in Boxes I and
II. Above bothmatrices, we indicate the sex structure of the sample
for each column (e.g., M, M denotes lineages sampled from two
males), and the physical locations associated with states (e.g., in
the same individual but not coalesced, or from different demes).

3. Results

We can rewrite both transition matrices in Boxes I and II in the
form

P = D+ B/N + EN . (1)

Assuming thatMf andMm donot depend onN (i.e., asN approaches
infinity, the numbers of migrants per generation converge to some
limiting constants, which are again denoted by Mf and Mm for
convenience), then D = limN→∞ P and B = limN→∞ N(P − D)
(which both do not depend on N). Note that, in Eq. (1), EN =
P − D − B/N denotes some error matrix with terms of the order
of m2, 1/N2, and m/N . See Appendix A for an example of this
decomposition.

The entries inD represent a fast process, namely themovement
of lineages between males and females according to Mendelian
inheritance, while the entries in B represent rare processes of
migration and coalescence which are assumed to occur once over
a period on the order of N generations. Möhle’s theorem (1998)
states that if R = limt→∞ Dt exists (letting the fast process run
to its conclusion), then the rates of coalescence and migration
among demes when time is scaled by N generations are given by
the product matrix G = RBR. Specifically, limN→∞ PNt = RetG
(Möhle, 1998).
We show DX (= limN→∞ PX ) and RX in (2) and (3) below while

the detailed derivations of the corresponding autosomal matrices
and of GX and GA appear in Appendix B. In the case of PX given by
the matrix in Box II, DX = limN→∞ PX is

DX =



0 0 0 1 0 0 0 0 0
0 1/4 1/4 1/2 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0 0
0 0 0 0 1/4 1/4 1/2 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1/2 0 1/2 0 0
0 0 0 0 0 0 0 1/2 1/2
0 0 0 0 0 0 0 1 0


. (2)

The columns in matrix (2) can be interpreted using the definitions
in Table 1. The terms in DX are familiar terms based on the
inheritance of X chromosomes, as are the entries of RX =

limt→∞(DX )t :

RX =



0 4/9 1/9 4/9 0 0 0 0 0
0 4/9 1/9 4/9 0 0 0 0 0
0 4/9 1/9 4/9 0 0 0 0 0
0 4/9 1/9 4/9 0 0 0 0 0
0 0 0 0 4/9 1/9 4/9 0 0
0 0 0 0 4/9 1/9 4/9 0 0
0 0 0 0 4/9 1/9 4/9 0 0
0 0 0 0 0 0 0 2/3 1/3
0 0 0 0 0 0 0 2/3 1/3


. (3)

When applying Möhle’s result to PA and PX , a block structure
emerges in the R and Gmatrices for both X-linked and autosomal
loci, exemplified by the blocks seen in matrix (3). We can collapse
some states together by summing the entries in their columns and
by collapsing some rows, reducing the analysis to 3 × 3 matrices.
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Same female︷ ︸︸ ︷
F

Same deme︷ ︸︸ ︷
F , F M, M M, F

Different demes︷ ︸︸ ︷
F , F M, M M, F

Coalesced︷ ︸︸ ︷
F M

PX =



0 0 0 1 0 0 0 0 0
gF ,F
I,I
8Nf

gF ,F
I,I
4

(
1− 1

Nf

)
gF ,F
I,I
4

(
1− 1

Nm

)
gF ,F
I,I
2

gF ,F
I,II
4

gF ,F
I,II
4

gF ,F
I,II
2

gF ,F
I,I
8Nf

gF ,F
I,I
4Nm

gM,M
I,I
2Nf

gM,M
I,I

(
1− 1

Nf

)
0 0 gM,M

I,II 0 0
gM,M
I,I
2Nf

0
gM,F
I,I
4Nf

gM,F
I,I
2

(
1− 1

Nf

)
0

gM,F
I,I
2

gM,F
I,II
2 0

gM,F
I,II
2

gM,F
I,I
4Nf

0
gF ,F
II,I
8Nf

gF ,F
II,I
4

(
1− 1

Nf

)
gF ,F
II,I
4

(
1− 1

Nm

)
gF ,F
II,I
2

gF ,F
II,II
4

gF ,F
II,II
4

gF ,F
II,II
2

gF ,F
II,I
8Nf

gF ,F
II,I
4Nm

gM,M
II,I
2Nf

gM,M
II,I

(
1− 1

Nf

)
0 0 gM,M

II,II 0 0
gM,M
II,I
2Nf

0
gM,F
II,I
4Nf

gM,F
II,I
2

(
1− 1

Nf

)
0

gM,F
II,I
2

gM,F
II,II
2 0

gM,F
II,II
2

gM,F
II,I
4Nf

0

0 0 0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 0 1 0


Box II.

GX =

Same deme︷ ︸︸ ︷ Different demes︷ ︸︸ ︷ Coalesced︷ ︸︸ ︷
−
2
3

(
2Mf
r +

Mm
1−r

)
−

2−r
9r(1−r)

2
3

(
2Mf
r +

Mm
1−r

)
2−r
9r(1−r)

2
3(D−1)

(
2Mf
r +

Mm
1−r

)
−

2
3(D−1)

(
2Mf
r +

Mm
1−r

)
0

0 0 0


Box III.

Same deme︷ ︸︸ ︷ Different demes︷ ︸︸ ︷ Coalesced︷ ︸︸ ︷
GA =


−

(
Mf
r +

Mm
1−r

)
−

1
8r(1−r)

Mf
r +

Mm
1−r

1
8r(1−r)

1
D−1

(
Mf
r +

Mm
1−r

)
−

1
D−1

(
Mf
r +

Mm
1−r

)
0

0 0 0


Box IV.

For example, we can sum the entries
∑4
j=1(GX )1j (see Appendix B)

and get a single rate of staying in the same deme for two lineages
sampled in the same female individual, but not coalesced (the
state described by row and column 1 of PX ). The sum

∑4
j=1(GX )ij

has the same value for each i = 1, 2, 3, 4. This is because in
the fast process occurring according to DX and DA, lineages move
quickly between males and females, so the current sex structure
of the sample becomes unimportant and instead we need only
follow whether sampled lineages are in the same deme or in
different demes. Thus, the product matrices GX and GA for X-
linked and autosomal lineages in this process simplify toGX andGA
(equations in Boxes III and IV, respectively; see Appendix B for the
derivation).
Using first-step analysis, we can calculate the expected times

to coalescence for a pair of lineages, sampled from the same
deme (E[T same]) or sampled from different demes (E[T diff]). In the
discrete-time processes studied here, the expected time to arrive
in state j given that the current state is i equals the time tomake the
jump from state i to another state plus the expected time it takes
to reach state j after the jump is made. We are interested in time
to coalescence, so we need to solve the following equations to get,

for example, expected times to coalescence for a pair of autosomal
lineages, E[T sameA ] and E[T diffA ]:

E[T sameA ] =
1

(GA)12 + (GA)13
+

(GA)12

(GA)12 + (GA)13
E[T diffA ]

E[T diffA ] =
1

(GA)21
+ E[T sameA ].

Solving these and the analogous equations for X-linked loci
gives Eqs. (4)–(7), measured in units of N generations.

E[T sameA ] = 8Dr(1− r) (4)

E[T diffA ] = 8Dr(1− r)+
(D− 1)(1− r)r
Mf (1− r)+Mmr

(5)

E[T sameX ] =
9Dr(1− r)
2− r

(6)

E[T diffX ] =
9Dr(1− r)
2− r

+
3
2

(
(D− 1)(1− r)r
2Mf (1− r)+Mmr

)
. (7)

Using our notation, Slatkin’s (1991) formulation of FST at
an autosomal locus in a set of D demes is FST ,A = 1 −
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Fig. 1. The region in which the ratioMf /Mm is positive, as computed from Eqs. (10) and (11) for fixed values of r , with FST ,X and FST ,A varying on the interval [0, 1]. The region
is shaded in grey. The solid line is 2FST ,A(2− r)/[3+ FST ,A(1−2r)], which FST ,X must exceed forMm to be greater than zero. The dashed line is 4FST ,A(2− r)/[3+ FST ,A(5− r)],
which FST ,X must be less than forMf to exceed zero.

E[T sameA ]/{E[T sameA ]/D + (D − 1)E[T diffA ]/D}. The relationship
between coalescence times and FST in this formulation depends on
themutation rate being very small. AsD approaches infinity,we get

FST ,A =
1

1+ 8[Mf (1− r)+Mmr]
(8)

FST ,X =
1

1+ 6
2−r

[
2Mf (1− r)+Mmr

] . (9)

Given estimates of FST at X-linked and autosomal loci, and
assuming some value on the interval (0, 1) for r , we can estimate
Mf andMm from (8) and (9) as:

Mf =
1

(1− r)

[
2− r
6FST ,X

−
1
8

(
1
FST ,A
+
1
3

)
−
1− r
6

]
(10)

Mm =
1
r

[
−
2− r
6FST ,X

+
1
4

(
1
FST ,A
+
1
3

)
−
r
6

]
. (11)

Application to HGDP-CEPH data

A total of 783 autosomal microsatellites from Marshfield
Screening Sets #10 and #52 have been reported in the HGDP
individuals from 52 populations. Screening Set #10 also contained
the 17 non-pseudoautosomal X-linked microsatellites studied by
Ramachandran et al. (2004), and Screening Set #52 provided 19
additional non-pseudoautosomal X-linked microsatellites studied
here. The data files used in this analysis are available from the
authors.
We inferred the sex of individuals from their X-chromosomal

genotypes at the 36 loci examined, and we verified the infer-
ences against the corresponding inferences made using the X-
chromosomal data of Conrad et al. (2006). With one exception,
individuals treated asmales in our analysis all had<15% heterozy-
gous loci and females all had >19% heterozygous loci on the X
chromosome, among loci with no missing data. The exception,
individual #139, was verified to be male on the basis of the
data of Conrad et al. (2006), which included a larger number
of X-chromosomal loci. Males were treated as hemizygous for
calculations. Some males were reported as heterozygous at non-
pseudoautosomal X-linked loci; in such cases males were coded as
having missing data at these loci.
Since the initial announcement of the HGDP (Cann et al., 2002),

subsequent analyses have called attention to individuals who
appear to be duplicated or closely related. Herewe calculate FST for
two sets of HGDP individuals (Tables 2 and 3): 1048 individuals,
where one individual from each pair of putatively duplicated

individuals (Mountain and Ramakrishnan, 2005; Rosenberg, 2006)
is excluded; and 952 individuals, a proper subset of the set of 1048,
where individuals with first- and second-degree relationships are
excluded (Rosenberg, 2006).
We calculated FST based on the 36 X-linked and 783 autosomal

microsatellites typed in the Human Genome Diversity Panel,
using Weir’s estimator (Weir, 1996) for the proportion of genetic
variationdistributed amongpopulations. FST was calculated among
all populations, as well as among populations within the same
continental region, as defined previously by Rosenberg et al.
(2002); the estimatorwas obtained separately for X-linked loci and
for autosomal loci, following equation (5.3) on page 174 of Weir
(1996). For the computation we grouped all Bantu individuals into
one population with a sample size of 20 individuals. We obtained
confidence intervals for X-linked and autosomal FST values by
bootstrapping separately over each set of loci 1000 times (see
intervals in Tables 2 and 3).
We employ Eqs. (10) and (11) to estimate the ratio of female

migrants to male migrants using observed FST values from the
data, for a given assumed proportion of females in the population.
Note that in order for Mf and Mm to be interpretable they must
be positive, which may not be the case for certain combinations of
FST and r values. In order for both Mf and Mm to be greater than
zero, the condition 2FST ,A(2 − r)/[3 + FST ,A(1 − 2r)] < FST ,X <
4FST ,A(2 − r)/[3 + FST ,A(5 − r)] must be satisfied. The region in
which Mf /Mm is positive for various fixed values of r , as FST ,X and
FST ,A vary on the interval [0, 1], is shown in Fig. 1.
We obtained intervals for Mf /Mm (Tables 2 and 3) by taking

the 1000 bootstrapped FST ,X and 1000 bootstrapped FST ,A values,
and computing Mf /Mm for all 106 possible pairs of bootstrapped
FST values. We disregarded those estimates ofMf /Mm which were
negative, choosing to interpret negative estimates of Mf and Mm
as providing little support for the assumed r-value or for our
migration model. The number of values used to generate the
intervals in Tables 2 and 3 after the exclusion of negative estimates
is also given.

4. Discussion

In this paper, we apply Möhle’s theorem (1998) to transition
matrices for X-linked and autosomal loci sampled in an island
model ofD demeswith sex-specific population sizes andmigration
rates, and we obtain simple expressions under the model for
expected times to coalescence for two sampled alleles and for FST
at X-linked and autosomal loci. Möhle’s result is useful because it
gives us a continuous-time limit of a discrete-time process where
events are occurring on two time scales: in this case, the fast
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Table 2
Estimated ratio ofMf /Mm , using data from 1048 individuals

Sample Number of populations FST , autosomal (95% C.I.) FST , X-linked (95% C.I.) Mf /Mm at r = 0.5 (95% C.I.) Number of ratios≥ 0

World 52 0.0561 (0.0543, 0.0579) 0.0718 (0.0620, 0.0839) 1.1524 (0.4149, 4.4257) 999535
Africa 6 0.0300 (0.0286, 0.0314) 0.0539 (0.0401, 0.0691) 0.0936 (0.0078, 1.1324) 716775
Eurasia 21 0.0158 (0.0152, 0.0165) 0.0226 (0.0183, 0.0276) 0.6345 (0.1519, 2.7184) 998081
Europe 8 0.0079 (0.0071, 0.0087) 0.0122 (0.0069, 0.0180) 0.4127 (0.0208, 9.1672) 818855
Middle East 4 0.0137 (0.0130, 0.0145) 0.0162 (0.0121, 0.0208) 2.1807 (0.4004, 32.2857) 852251
C/S Asia 9 0.0137 (0.0130, 0.0145) 0.0149 (0.0095, 0.0208) 4.9120 (0.3772, 59.5790) 636089
East Asia 18 0.0125 (0.0117, 0.0134) 0.0156 (0.0102, 0.0215) 1.4720 (0.1563, 23.0857) 865762
Oceania 2 0.0635 (0.0577, 0.0692) 0.0847 (0.0544, 0.1220) 0.8746 (0.0542, 18.3075) 863700
America 5 0.1174 (0.1127, 0.1219) 0.1367 (0.1166, 0.1567) 2.1349 (0.7401, 19.5850) 964990

Estimates of the among-population component of genetic variation based on 783 autosomal and 36 X-linked microsatellites in the HGDP-CEPH individuals, for global and
various regional subsets of the data. Also reported are the estimated ratios ofMf /Mm when r = 0.5, calculated using 1048 individuals (Rosenberg, 2006). ‘‘C/S Asia’’ refers to
Central/South Asian populations from the panel (see Rosenberg et al. (2002)). Confidence intervals for FST were obtained by bootstrapping over loci 1000 times. The number
of values out of 106 used to generate intervals forMf /Mm , after the exclusion of negative estimates, is given in the last column.

Table 3
Estimated ratio ofMf /Mm , using data from 952 individuals

Sample Number of populations FST , autosomal (95% C.I.) FST , X-linked (95% C.I.) Mf /Mm at r = 0.5 (95% C.I.) Number of ratios≥ 0

World 52 0.0455 (0.0438, 0.0472) 0.0586 (0.0491, 0.0702) 1.1354 (0.3530, 5.2649) 992554
Africa 6 0.0260 (0.0245, 0.0274) 0.0465 (0.0338, 0.0611) 0.1026 (0.0087, 1.2628) 720323
Eurasia 21 0.0150 (0.0144, 0.0156) 0.0218 (0.0172, 0.0266) 0.5896 (0.1265, 2.8729) 994778
Europe 8 0.0076 (0.0069, 0.0084) 0.0112 (0.0061, 0.0167) 0.5722 (0.0262, 15.7893) 808661
Middle East 4 0.0130 (0.0121, 0.0137) 0.0150 (0.0111, 0.0194) 2.5593 (0.4367, 40.5666) 817864
C/S Asia 9 0.0127 (0.0119, 0.0134) 0.0146 (0.0089, 0.0205) 2.7676 (0.2370, 34.5307) 719969
East Asia 18 0.0113 (0.0105, 0.0121) 0.0134 (0.0081, 0.0190) 2.1811 (0.1713, 35.2105) 745435
Oceania 2 0.0552 (0.0493, 0.0616) 0.0753 (0.0410, 0.1155) 0.7702 (0.0320, 19.1807) 766059
America 5 0.0836 (0.0799, 0.0876) 0.0942 (0.0789, 0.1087) 3.0884 (0.9013, 32.3565) 909730

This table reports a similar analysis to that reported in Table 2, but using 952 individuals (Rosenberg, 2006). This set of HGDP individuals contains no two individuals with a
second-degree relationship (half siblings, avuncular, or grandparent/grandchild).

process of movement of lineages between males and females, and
the slow processes of movement of individuals among demes and
of coalescence.
The entries in the matrices in Boxes III and IV give us the rates

at which, when time is measured in units of N generations, two
sampled lineages move among three states: being in the same
deme, being in different demes, or coalescing. (GA)12 gives the
rate (over N generations) at which autosomal lineages move out
of the same deme into different demes, (GA)21 gives the rate of
movements of lineages into the same deme from different demes,
and (GA)13 gives the rate of coalescence, which can only happen
in the model when lineages are in the same deme. For both GA
and GX the last row contains only zeros because coalescence is an
absorbing state.
The rates of coalescence given by (GA)13 and (GX )13 are familiar:

they are half the reciprocals of the variance effective population
size of autosomal and X-linked genes in a sexual population with
an unequal sex ratio (e.g., Nordborg and Krone (2002) and Hartl
and Clark (2007)). The expected times to coalescence given in Eqs.
(4)–(7) also reflect that two lineages sampled fromdifferent demes
must enter the same deme to coalesce, and then coalesce at a rate
expected for an X-linked or autosomal locus in a population with
an unequal sex ratio.
Using the expected times to coalescence for loci sampled in the

same deme or in different demes,we can calculate FST at autosomal
and X-linked loci in our model, as in Eqs. (8) and (9). The forms
of (8) and (9) are 1/(1 + 4Neme), where Ne = 4NmNf /(Nm +
Nf ) = 4Nr(1 − r) and me = (mm + mf )/2 for autosomal loci,
and Ne = 9NmNf /(4Nm + 2Nf ) = 9Nr(1 − r)/[2(2 − r)] and
me = (2mf +mm)/3 for X-linked loci.
When Mm = Mf = M , then FST ,A = 1/(1 + 8M) and FST ,X =

1/(1 + 6M), with FST ,X being greater than FST ,A. If Mf /Mm > 1,
then FST ,X can become less than FST ,A for some values of r on (0, 1),
as shown in Fig. 2(A), where FST ,X crosses FST ,A at r = 0.5076 and
r = 0.9949. If the number of male migrants exceeds the number

of female migrants per generation, then FST ,X can exceed FST ,A; in
Fig. 2(B) these values become closer for larger values of r .

Fig. 2. FST at X-linked and autosomal loci (Eqs. (8) and (9)) as r , the female fraction
of the population, varies on (0, 1). The dashed line is FST ,X and the solid line is FST ,A .
A:Mf = Nfmf = 1migrant per generation, while the number of male migrants per
generation is 0.01. B: Mm , the number of male migrants per generation, is equal to
1, whileMf = 0.01.
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Fig. 3. Global and regional estimates of the ratio of female to male migrants (the ratio of Eq. (10) to Eq. (11)) as r varies over [0.4, 0.6], based on FST values calculated using
952 individuals from the Human Genome Diversity Panel (see Table 3). ‘‘MidEast’’ denotes the Middle East; ‘‘C/S Asia’’ denotes ‘‘Central/South Asia’’.

Using observed values of FST from theHumanGenomeDiversity
Panel at X-linked and autosomal loci, we then use Eqs. (10) and
(11) to estimate the ratio of female to male migrants Mf /Mm. We
assume equal numbers of males and females when calculating the
estimates in Tables 2 and 3. In this model, there are no differences
between the rates of reproductive success in males and females.
However, the consequence of differences between reproductive
success in males and females is an important question for further
investigation (see, for example, Helgason et al. (2003) and Wilder
et al. (2004b)).
When r = 0.5, global FST values across HGDP populations

can be explained by requiring a ratio of female to male migrants
only slightly larger than 1. Regional values vary a great deal, both
when r = 0.5 and when r varies over [0.4, 0.6] (Fig. 3). In
the Middle East, Central/South Asia, East Asia, and the Americas,
assuming r = 0.5, observed FST values require a greater number
of female migrants than male migrants to be explained in our
model, while in Africa, Europe, and Oceania, the analysis finds
support for more male migrants than female migrants. This could
be due to differences in reproductive success formales and females
in these regions, or to some other assumption made in our
model.
Although we are not able to draw strong empirical conclusions

from these data,wehave rigorously derived FST and expected times
to coalescence under this new model, making explicit how popu-
lation differentiation, as measured by FST , depends on the number
of males and females in a population and on the migration rates
of the sexes. A scenario with males migrating more than females
(Fig. 2(B)) creates a bigger discrepancy between FST ,A and FST ,X

than the reverse situation, producing differences that are much
larger than those observed between FST values for the autosomes
and for the X chromosome in the HGDP dataset. In combination
with other tools, our results may assist in further investigations
of the contributions of males and females to the history of human
migration.
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Appendix A. The migration components of transition matrix
entries

Recall gM,M
i,j is the probability that a sample of two males are

currently found in i number of demes (i = I, II) and were found in
j number of demes (j = I, II) in the previous generation; states
i and j refer to whether the sampled lineages were in the same
deme (denoted as I) or different demes (II). For any sample, gi,j
will depend on the backwards migration rate and the population
sizes of males (and/or females, depending on the individuals from
which lineages were sampled), but will not depend on whether
the sampled locus is X-linked or autosomal. Note that sampling of
individuals is done without replacement. Thus, gi,j for a sample of
two males is given below:
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gM,M
I,I =

neither lineage was in a migrant︷ ︸︸ ︷
Nm(1−mm)

Nm

(
Nm(1−mm)− 1

Nm − 1

)

+

both lineages were in
migrants from the same deme︷ ︸︸ ︷(
Nmmm
Nm

)
Nmmm − 1
Nm − 1

(
1

D− 1

)

gM,M
I,II =

exactly one lineage was in a migrant︷ ︸︸ ︷
2Nm(1−mm)

Nm

(
Nmmm
Nm − 1

)

+

both lineages were in
migrants from different demes︷ ︸︸ ︷(
Nmmm
Nm

)
Nmmm − 1
Nm − 1

(
D− 2
D− 1

)
gM,M
II,I =

2mm(1−mm)

D− 1
+
m2m(D− 2)
(D− 1)2

gM,M
II,II = (1−mm)2 +

2mm(1−mm)(D− 2)
D− 1

+m2m

[
1

D− 1
+

(
D− 2
D− 1

)2]
.

The corresponding probabilities for a sample of two females are
obtained by substitutingmf and Nf formm and Nm, respectively, in
the equations above.
For a sample with one male lineage and one female lineage:

gM,F
I,I = (1−mm)(1−mf )+

mfmm
D− 1

gM,F
I,II = mf (1−mm)+mm(1−mf )+mfmm

D− 2
D− 1

gM,F
II,I =

1
D− 1

[
mf (1−mm)+mm(1−mf )

]
+
mfmm
D− 1

D− 2
D− 1

gM,F
II,II = (1−mm)(1−mf )

+
D− 2
D− 1

[
mf (1−mm)+mm(1−mf )

]
+mfmm

[
1

D− 1
+

(
D− 2
D− 1

)2]
.

Note that gk,li,I + g
k,l
i,II (the probability alleles sampled from two

individuals with sexes k and l in state i in the present were in
individuals in either the same or different demes in the previous
generation) is 1 for all i, k, l.
To give an example of the decomposition of terms in the

matrices in Boxes I and II according to Eq. (1), let us examine (PA)35
more closely. (PA)35 is the probability that two autosomal alleles
sampled from two females in the same deme in the present were
in one male and one female in the same deme one generation
ago.

(PA)35 =
gF ,F
I,I

2

=
1
2

[
Nf (1−mf )

Nf

(
Nf (1−mf )− 1

Nf − 1

)
+

(
Nfmf
Nf

)
Nfmf − 1
Nf − 1

(
1

D− 1

)]
.

Substitutingmf = Mf /Nf = Mf /(Nr),

(DA)35 = lim
N→∞

(PA)35

= lim
N→∞

gF ,F
I,I

2

= lim
N→∞

1
2

[(
1−

Mf
Nr

)(
Nr[1− Mf

Nr ] − 1
Nr − 1

)]

+ lim
N→∞

goes to 0 as N→∞︷ ︸︸ ︷
Mf
2Nr

(
Mf − 1
Nr − 1

)
1

D− 1

= lim
N→∞

1
2

(
1−

Mf
Nr

)(
Nr −Mf − 1
Nr − 1

)
=
1
2

(see (DA)35 in Appendix B).

Using the definition of BA from Eq. (1), we get

(BA)35 = lim
N→∞

N

(
gF ,F
I,I

2
− (DA)35

)

= lim
N→∞

N

(
gF ,F
I,I

2
−
1
2

)

= lim
N→∞

N
2

[(
1−

Mf
Nr

)[
Nr(1− Mf

Nr )− 1
Nr − 1

]

+
Mf
Nr

(
Mf − 1
Nr − 1

)
1

D− 1
− 1

]

= lim
N→∞

Nr −Mf2r

[
Nr −Mf − 1
Nr − 1

]

+

goes to 0 as N→∞︷ ︸︸ ︷
Mf
2r

(
Mf − 1
Nr − 1

)
1

D− 1
−
N
2


= lim
N→∞

(Nr −Mf )2 − (Nr −Mf )− Nr(Nr − 1)
2r(Nr − 1)

= lim
N→∞

���(Nr)2 − 2MfNr +M2f −��Nr +Mf −���(Nr)2 +��Nr

2r(Nr − 1)

= lim
N→∞

−2MfNr
2r(Nr − 1)

+ lim
N→∞

M2f +Mf
2r(Nr − 1)

. (12)

The second term of the right-hand side of Eq. (12) above goes to 0
as N →∞; using L’Hospital’s Rule on the first term, then

(BA)35 = lim
N→∞

−2MfNr
2r(Nr − 1)

= lim
N→∞

−2Mf r
2r2

=
−Mf
r

(see (BA)35 in Appendix B).

LetEN,A denote the errormatrixEN fromEq. (1) of the autosomal
transition matrix PA. Then

(EN,A)35 = (PA)35 − (DA)35 −
(BA)35
N

=
gF ,F
I,I

2
−
1
2
+
Mf
Nr

=
D(Mf − 1)Mf

2(D− 1)Nr(Nr − 1)
−−−→
N→∞

0.



Author's personal copy

S. Ramachandran et al. / Theoretical Population Biology 74 (2008) 291–301 299

Appendix B. The derivation of GX and GA using Möhle’s (1998)
result

From Eq. (1), as N approaches infinity, BX can be written as in
Box V. Using the equation in Box V and RX given in matrix (3), the
product matrix GX can be written as in Box VI.
To obtain the terms (GX )ij given in the matrix in Box III in the

main text,

(GX )11 =
4∑
j=1

(GX )1j;

(GX )12 =
7∑
j=5

(GX )1j; (GX )13 =
9∑
j=8

(GX )1j

(GX )21 =
4∑
j=1

(GX )5j;

(GX )22 =
7∑
j=5

(GX )5j; (GX )23 =
9∑
j=8

(GX )5j.

The autosomal matrices DA,RA, BA, and GA are all 10 × 10
matrices, with states as in Table 1. Using PA given by the matrix
in Box I, from Eq. (1) DA = limN→∞ PA is

DA =



0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 1/4 1/4 1/2 0 0 0 0 0
0 0 1/4 1/4 1/2 0 0 0 0 0
0 0 1/4 1/4 1/2 0 0 0 0 0
0 0 0 0 0 1/4 1/4 1/2 0 0
0 0 0 0 0 1/4 1/4 1/2 0 0
0 0 0 0 0 1/4 1/4 1/2 0 0
0 0 0 0 0 0 0 0 1/2 1/2
0 0 0 0 0 0 0 0 1/2 1/2


.

RA = lim
t→∞

(DA)t

=



0 0 1/4 1/4 1/2 0 0 0 0 0
0 0 1/4 1/4 1/2 0 0 0 0 0
0 0 1/4 1/4 1/2 0 0 0 0 0
0 0 1/4 1/4 1/2 0 0 0 0 0
0 0 1/4 1/4 1/2 0 0 0 0 0
0 0 0 0 0 1/4 1/4 1/2 0 0
0 0 0 0 0 1/4 1/4 1/2 0 0
0 0 0 0 0 1/4 1/4 1/2 0 0
0 0 0 0 0 0 0 0 1/2 1/2
0 0 0 0 0 0 0 0 1/2 1/2


.

For BA and GA, see Boxes VII and VIII.
To obtain the terms (GA)ij given in the matrix in Box IV in the

main text,

(GA)11 =
5∑
j=1

(GA)1j;

(GA)12 =
8∑
j=6

(GA)1j; (GA)13 =
10∑
j=9

(GA)1j

(GA)21 =
5∑
j=1

(GA)6j;

(GA)22 =
8∑
j=6

(GA)6j; (GA)23 =
10∑
j=9

(GA)6j.

B X
=
lim N→
∞

N
(P
X
−

D X
)

=

                         0
0

0
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